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Abstract. A model, introduced earlier for the dynamics of a generic efficiency measure in a population
of agents by Majumdar and Krapivsky (Phys. Rev. E 63, 054101 (2001)), is investigated on scale-free
networks whose degree distribution follows a power law with the tunable exponent γ. The model shows
a delocalization transition from a stagnant phase to a growing one when decreasing the degree exponent
γ of scale-free networks. By taking into account the specific dynamical properties of the model and the
geometrical properties of scale-free networks, we predict the appearance of this critical transition. This
work is useful for understanding these kinds of transitions occurring in many dynamical processes on
scale-free networks.

PACS. 89.75.Hc Networks and genealogical trees – 05.10.-a Computational methods in statistical physics
and nonlinear dynamics – 87.23.Ge Dynamics of social systems

1 Introduction

Complex systems consist of many constituents such as in-
dividuals, substrates, and companies in social, biological,
and economic systems, etc. They show cooperative phe-
nomena between constituents through diverse interactions
and adaptations to the pattern created by them [1,2]. In-
teractions may be described in terms of complex networks,
consisting of vertices and edges, where vertices (edges)
represent the constituents (their interactions). Various
models have been developed in order to describe the struc-
ture and properties of these networks [3–8]. Among these
models, the small-world network introduced by Watts and
Strogatz attracts a great deal of attention [6,7]. A great
number of dynamics of social processes were studied on
the small-world network, such as disease spreading, forma-
tion of public opinion, distribution of wealth, etc. [9–14].
In the past, we developed a simple model that describes
the dynamics of efficiencies of competing agents [15] on a
small-world network [16]. In this model communications
among agents lead to the increase of efficiencies of under-
achievers, and the efficiency of each agent can increase or
decrease irrespective of other agents. The model can also
be considered as a polynuclear growth model with desorp-
tion, where the degrees of freedom are the heights of a
growing interface [17–19].

However, several studies on real complex networks
from different fields as biology, economy, or sociology have

a e-mail: xwzou@whu.edu.cn

shown that the degree of nodes (number of edges con-
nected to each node) follows a scale-free power-law dis-
tribution like P (k) ∼ k−r, where P (k) denotes the fre-
quency of the nodes that are connected to k other nodes.
Such networks, called scale-free networks, are ubiquitous
in nature, such as the World Wide Web [20–22], the In-
ternet [23,24], the citation network [25], the author col-
laboration network of scientific papers [26–28], and the
metabolic networks in biological organisms [29]. Thus, a
lot of dynamic models have been proposed based on the
scale-free network, such as disease spreading [30], sandpile
model [31], Bak-Sneppen model [32], and load distribution
model [33].

In this paper we develop the simple efficiency model
on scale-free networks with the tunable degree exponent γ.
The model shows a delocalization transition from a stag-
nant phase to a growing one when decreasing the degree
exponent γ of scale-free networks instead of increasing
the disorder of the small-world networks [16]. The present
work will be useful for understanding the critical transi-
tion appearing in many dynamical processes on scale-free
networks with tunable degree exponent γ.

2 Model and method

2.1 Scale-free networks

A scale-free network can be generated by using the static
model [31,32]. The network consists of N nodes. Each
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node is indexed by an integer i (i = 1, . . . , N) and is as-
signed a weight equal to wi = i−α. Here α is a control
parameter in [0,1) and is related to the degree exponent
via the relation γ = 1 + 1/α for large N . Adjusting the
control parameter α in [0,1) we can get various exponents
γ in the interval (2,∞). At each step, we randomly select
two different nodes i and j with probabilities equal to the
normalized weights, wi/Σkwk and wj/Σkwk, respectively,
and attach an edge between them unless one exists al-
ready. This process is repeated until the mean degree of
the network becomes 2m. In this work, we take N = 104

and m = 5.

2.2 Efficiency model

In this work, the evolution of the efficiencies has analogy
to that used in references [15] and [16], which may mimic
the dynamics of efficiencies of competing agents such as
airlines, travel agencies, insurance companies, etc. The ef-
ficiency of each agent is expressed as a single nonnegative
number. The efficiency of every agent can, independent of
other agents, increase or decrease stochastically by a cer-
tain amount which we set equal to unity. In our model,
the interactions between the agents of the population are
expressed by a scale-free network.

Our efficiency model on the scale-free network can be
described as follows. Each agent is represented by an node
in the network. The agent i is characterized by a non-
negative integer number hi(t), which stands for its efficient
level. It has been verified that the calculated results not
depend on the initial conditions for present model. Thus,
we choose the efficiency of each agent hi(0) = 0 as the
initial conditions for simplicity. We study the evolution of
the efficiencies of N agents in the scale-free network by
Monte Carlo (MC) simulations. At MC step t, an agent is
selected randomly (say, it is the agent i) and its efficient
hi(t) is changed from hi(t) to one of three values with
corresponding probability as follows:

(i) hi(t) is replaced with the value of max[hi(t), hj(t)]
with probability 1/(1 + p + q), where the agent j is
one of the agents which are linked to the agent i. It
is based on the fact that each agent tries to equal
its efficiency to that of a better performing agent in
order to stay competitive.

(ii) hi(t)is changed into hi(t)+1 with probability p/(1+
p + q). This is in agreement with the fact that each
agent can increase its efficiency, say due to innova-
tions, irrespective of other agents.

(iii) hi(t) is substituted by hi(t) − 1 with probability
q/(1 + p + q). This is consistent with to the fact
that each agent can lose its efficiency due to unfore-
seen problems such as labor strikes. Note, however,
that since hi(t) ≥ 0, this move can occur only when
hi(t) ≥ 1.

The renewal of efficiency continues step by step. After
each MC step the ‘time’ is increased by 1/N . Thus after
1 time step on the average all agents in the network have
made an update. In order to investigate the effect of the

Fig. 1. The average efficiency 〈h(t)〉 as a function of time t
for a set of degree exponent γ. The size of the system N = 104.

topological structure of the population on the dynamics of
efficiencies, the value of the parameters p and q are fixed
in the present model. Without loss of generality, we choose
p = 1 and q = 18, where the mean-field theory predicts a
stagnant phase of efficiencies [15].

3 Results and discussion

To investigate the dynamics of efficiency on the scale-free
networks, extensive numerical simulations have been com-
pleted. In the simulations, we take the size of the system
N = 104 and the degree exponent γ in [2,∞). To reduce
the effect of fluctuation on calculated results, for every sys-
tem with size N , the calculated results are averaged over
both 10 different network realizations and 10 independent
runs for each network realization.

Firstly, we have calculated the average efficiency 〈h(t)〉
per agent as a function of time t for different degree ex-
ponent γ. Figure 1 shows the average efficiency 〈h(t)〉 as
a function of time t for the system with size N = 104 for
a set of different degree exponent γ. It can be seen from
Figure 1 that there exists a critical degree exponent γc.
When the degree exponent γ < γc, the average efficiency
〈h(t)〉 per agent will linearly increase with time t (e.g.
γ = 2.5), When the degree exponent γ > γc, the average
efficiency 〈h(t)〉 per agent approaches a low constant in
the long time (e.g. γ = 5). This indicates that there may
exist a critical phase transition from a growing phase of
efficiency to a stagnant phase of efficiency at a critical de-
gree exponent γc. To dwell on this transiton, the growth
rate v of the average efficiency 〈h(t)〉 per agent in the long
time limit is expressed as

v ≡ d〈h(t)〉
dt

=
d 1

N

∑N
i=1 hi(t)
dt

. (1)

We calculate the growth rate v as a function of the degree
exponent γ for several systems with size N = 104. The
results are shown in Figure 2a. The results show that as
for small γ, the growth rate v > 0 and for large γ, v → 0
in the long time limit. So there exists a transition at a
certain value γc. As γ > γc, the growth rate v is equal
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Fig. 2. The growth rate v of the average efficiency (a) and
the asymptotic efficiency fluctuation w∗ (b) as a function of
the degree exponent γ of the network. The size of the system
N = 104.

to zero; as γ < γc, v increases rapidly with γ. As γ ≈
γc, the growth rate v transits from zero to a finite value,
which corresponds to the transition of the system from a
stagnant phase to a growing one. To further research the
transition, we calculate the efficiency fluctuation w(t) of
the system, where the efficiency fluctuation w(t)is defined
as [16]

w2(t) =
1
N

N∑

i=1

(hi(t) − 〈h(t)〉)2 . (2)

The efficiency fluctuation w(t) inclines to a constant w∗ =
〈w(t → ∞)〉 in the long-time limit. For several systems
with size N = 104, the asymptotic value w∗ as a func-
tion of the degree exponent γ are shown in Figure 2b.
It can been seen from Figure 2b that when γ > γc, the
fluctuation w∗ tends to a small value of about 0.36; when
γ < γc, the fluctuation w∗ attains to the maximum close
to 30; and when γ ≈ γc, the fluctuation w∗ sharply jumps
from the small value to the maximum one. The results
also prove that there exists a transition at a certain in-
termediate value of γ. For present system with N = 104,
we obtain γc = 4.05, which corresponds to the inflexion of
the curves in Figure 2b.

To understand the critical behavior, we analyze the
dynamical properties of present model. In the model, three
facts make contributes to the time evolution of 〈h(t)〉: (i)
learning from its linked agents leads to the increase of
〈h(t)〉; (ii) innovation causes the increase; (iii) unforeseen
problems bring about the decrease. Therefore, the growth
rate v can be expressed as [15,16]

v(t) ≡ d〈h(t)〉
dt

=
Aw(t) + p − qs(t)

1 + p + q
, (3)

where A is a proportional factor depending on the de-
gree exponent γ, and s(t) is the probability of an agent
having a nonzero efficiency. On the right-hand side of
equation (3), The first term represents the increase due
to learning from its linked agents, which is proportional
to the nonuniform degree w∗ of efficiencies among agents.
The second term quantifies the increase caused by inno-
vation. The last term indicates the decrease resulted from
unforeseen problems and the reduction only take place if
the agent has a nonzero efficiency. Substituting the values
of p and q in equation (3), we obtain

v(t) =
1
20

[1Aw(t) + 1 − 18s(t)]. (4)

It can be seen from equation (4) that there exists a criti-
cal transition at an intermediate degree exponent γc of the
network. Cohen and Havilin have indicated that scale-free
networks are ultrasmall. As γ decreases, the average dis-
tance d of the network becomes much small [34]. Thus,
the communications among agents on scale-free networks
increase as γ decreases. Also it has been indicated that
there exists a critical transition at an intermediate degree
exponent γc of the network. As γ decreases, the network
inhomogeneity increases. The average degree of the near-
est neighbor of a node is κ = 〈k2〉/〈k〉, which can be ap-
proximated by [35]

κ = 〈k2〉/〈k〉 =
(

γ − 2
γ − 3

)(
k3−γ

cut − m3−γ

k2−γ
cut − m2−γ

)

, (5)

where, kcut = mN1/(γ−1). The average distance of net-
works d can be expressed as [36]

d ≈ lnN

ln(κ − 1)
. (6)

It can be seen from equations (5) and (6) that the av-
erage distance d decreases as the network inhomogeneity
increases. As the average distance decreases, communica-
tions among agents increase. So the network inhomogene-
ity enhances growth processes. Therefore, as γ > γc, the
factor A is small because of weak communications among
agents. The efficiencies of all agents are small, and the cor-
responding fluctuation w(t) is also small. So, it can been
expected that the first two terms and the last term on the
right-hand side of the equation (4) will cancel each other
and the probability with nonzero efficiency reaches the
asymptotic time-independent value, i.e. s = (Aw∗ +1)/18
in the long time limit. This represents that the growth rate
v = 0 and the average efficiency per agent 〈h〉 becomes a
constant in the long time limit. We call this phase the
“stagnant” phase [16]. However, as γ < γc, w and the
proportional factor A are large due to strong communica-
tions among agents. After a long time, the fluctuation w(t)
attains to the stable value w∗, and the probability with
nonzero efficiency reaches the maximum value of s = 1,
but the last term on the right-hand side of equation (4) is
still less than the sum of the fore two terms. So, the growth
rate v = (Aw∗ − 17)/20, which corresponds to that the
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Fig. 3. The influence of the system size N on the critical
degree exponent γc. (a) γc(N) as a function of the system size
N . (b) The deviation of the apparent critical value γc(N) from
the true critical value γc(∞) as a function of size N on a log-
log plot, where γc(∞) is chosen to be 5.76. The symbols are
the simulation results, and the straight line is the least-square
fit to the data.

average efficiency per agent 〈h(t)〉 increases linearly with
time t. We call this phase the “growing” phase [16]. It
can been seen from equations (5) and (6) that the average
distance d increases as γ increases. When γ = γc, we can
get dc from equations (5) and (6). When average distance
takes the value of dc, the communications among agents
make the increase in efficiency per agent be equal to the
loss in efficiency per agent.

In the following, we discuss the influence of the system
size on the critical degree exponent γc. Figure 3a shows
that the γc as a function of the system size N ranging
from 103 to 106. It can be seen from Figure 3a that with
the increase of the system size N the critical value γc(N)
increases and tends to a constant value, which corresponds
to the true critical value γc(∞) for the infinite-size system.
According to the finite-size effects of the systems, the ap-
parent critical point γc(N) and true critical point φc(∞)
are expected to scale with the size N as [37]

γc(∞) − γc(N) ∼ N−1/ν , (7)

where ν is the critical shift exponent. To obtain the value
of true critical point γc(∞) and critical exponent ν, Fig-
ure 3b plots the critical deviation γc(∞) − γc(N) as a
function of the system size N on a log-log plot. When
the true critical value is chosen to be γc(∞) 	 5.76, we
obtain the best power-law relation of the data by using
equation (7). The excellent linear dependence in Figure 3b

indicates that the finite-size scaling relation equation (7)
well describes the present simulation results. From Fig-
ure 3b we also obtain the critical exponent ν 	 4.2 by
means of the least-square fit to the data.

Finally, we discuss the influence of the value of p and
q chosen on the critical γc. We make simulations at a set
of points in the (p, q) plane, where the mean-field theory
predicts a stagnant phase of efficiencies [15]. By means
of a finite-size scaling analysis, we obtain that both the
critical γc and the exponent ν depend on the precise values
of p and q chosen. For example, when p = 1 and q = 20,
corresponding γc 	 4.26 and ν 	 2.7.

4 Conclusions

On scale-free networks with the tunable degree expo-
nent γ, the dynamics of efficiencies of competing agents
shows a critical behavior. The results indicate that there
exists a delocalization (or depinning) phase transition
from a stagnant phase to a growing one at a critical de-
gree exponent γc of the network. Above the critical point,
γ ≥ γc, the system is stagnant, the average efficiency per
agent approaches a constant; below it, γ < γc, the average
efficiency increases linearly with time. By taking into ac-
count the specific dynamical properties of the model and
geometrical propertied of scale-free network, we predict
the critical transition, which depends on the exponent of
the degree distribution. This critical transition can also
take place as the network becomes more and more skewed.
This is a new feature of scale-free network, that of enhanc-
ing growth processes thanks to their inhomogeneity.
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